Thresholding rules for recovering a sparse signal from microarray experiments.

نویسندگان

  • Chiara Sabatti
  • Stanislav L Karsten
  • Daniel H Geschwind
چکیده

We consider array experiments that compare expression levels of a high number of genes in two cell lines with few repetitions and with no subject effect. We develop a statistical model that illustrates under which assumptions thresholding is optimal in the analysis of such microarray data. The results of our model explain the success of the empirical rule of two-fold change. We illustrate a thresholding procedure that is adaptive to the noise level of the experiment, the amount of genes analyzed, and the amount of genes that truly change expression level. This procedure, in a world of perfect knowledge on noise distribution, would allow reconstruction of a sparse signal, minimizing the false discovery rate. Given the amount of information actually available, the thresholding rule described provides a reasonable estimator for the change in expression of any gene in two compared cell lines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Reliable recovery of hierarchically sparse signals and application in machine-type communications

We examine and propose a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge in the context of mobile communication, in settings motivated by desiderata of a 5G framework. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm [1] referred to as HiHTP. For the specific class of sparsity stru...

متن کامل

Generalized Thresholding Sparsity-Aware Online Learning in a Union of Subspaces

This paper studies a non-convexly constrained, sparse inverse problem in time-varying environments from a set theoretic estimation perspective. A new theory is developed that allows for the incorporation, in a unifying way, of different thresholding rules to promote sparsity, that may be even related to non-convex penalty functions. The resulted generalized thresholding operator is embodied in ...

متن کامل

Iterative Hard Thresholding with Near Optimal Projection for Signal Recovery

Recovering signals that have sparse representations under a given dictionary from a set of linear measurements got much attention in the recent decade. However, most of the work has focused on recovering the signal’s representation, forcing the dictionary to be incoherent and with no linear dependencies between small sets of its columns. A series of recent papers show that such dependencies can...

متن کامل

Iterative Soft/Hard Thresholding Homotopy Algorithm for Sparse Recovery

In this note, we analyze an iterative soft / hard thresholding algorithm with homotopy continuation for recovering a sparse signal x† from noisy data of a noise level . Under standard regularity and sparsity conditions, we design a path along which the algorithm will find a solution x∗ which admits sharp reconstruction error ‖x−x‖`∞ = O( ) with an iteration complexity O( ln ln ρ np), where n an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical biosciences

دوره 176 1  شماره 

صفحات  -

تاریخ انتشار 2002